criterion performance measurements

overview

want to understand this report?

vertices [0..1000]+circuit [1001..10000]/KL-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.240546981265899e-2 2.2507821927745936e-2 2.2648833423307438e-2
Standard deviation 2.14378989880587e-4 2.7146407949532223e-4 3.406385309386302e-4

Outlying measurements have slight (4.75e-2%) effect on estimated standard deviation.

vertices [0..1000]+circuit [1001..10000]/AM-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.6337452442743122e-2 1.6448874841601898e-2 1.6568649794835143e-2
Standard deviation 2.145094568623755e-4 2.767769221959165e-4 3.6794868583943813e-4

Outlying measurements have slight (3.993055555555542e-2%) effect on estimated standard deviation.

vertices [0..1000]+circuit [1001..10000]/AIM-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.4439567812357052e-2 2.461382464394668e-2 2.4860590585141108e-2
Standard deviation 3.043636924611619e-4 4.5022045519306465e-4 6.868958502255852e-4

Outlying measurements have slight (4.986149584487535e-2%) effect on estimated standard deviation.

overlays [ edge x (x+1000) | x <- [0..1000] ] + circuit [1001..10000]]/KL-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.4433603622492228 0.4452256064978428 0.44853350586890883
Standard deviation 2.975117495225277e-4 3.201228999868938e-3 3.991401673348222e-3

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

overlays [ edge x (x+1000) | x <- [0..1000] ] + circuit [1001..10000]]/AM-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.2246105716925134 0.22584429764412764 0.22812952900049924
Standard deviation 9.718936435400732e-4 2.3082812568272376e-3 3.3501836309799858e-3

Outlying measurements have moderate (0.13888888888888878%) effect on estimated standard deviation.

overlays [ edge x (x+1000) | x <- [0..1000] ] + circuit [1001..10000]]/AIM-alga

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 9.526019762798334e-2 9.597170559392627e-2 9.659017276000725e-2
Standard deviation 7.491469829786145e-4 1.0775799891653034e-3 1.5306440754204317e-3

Outlying measurements have slight (9.876543209876538e-2%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.